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Abstract

The electric admittance function of the piezoelectric patches bonded on a beam with an open crack is presented, for the

purpose of theoretically evaluating the health conditions of the cracked beam. At first, a sandwich beam with two layers of

piezoelectric actuators is regarded as a piezoelectric bimorph, and the dynamics of the bimorph is represented by a 5� 5

piezoelectric impedance matrix. Secondly, the dynamics of the elastic beam is also represented by a 4� 4 impedance

matrix, which is a degenerative form of piezoelectric impedance. Thirdly, the open crack is modeled as rotational massless

spring and an expression of the equivalent stiffness is adopted, then the spring is used to connect the adjacent elastic beam

segments. Furthermore, the cracked beam is represented by three elastic beam segments and one piezoelectric bimorph

segment together with one spring. The admittance function of the piezoelectric elements is obtained by solving the linear

impedance equations considering the mechanical–electric boundary conditions and the continuum conditions between the

beam segments and the spring. Lastly, the effects of the crack depth and location on the admittance are examined in two

numeric examples. It is found that the frequency changes and the admittance amplitude changes of the beam due to the

crack can be predicted by the piezoelectric admittance function, and the modal frequencies calculated by the proposed

method are accord with the results obtained by experiments and other methods. The possible application of the admittance

function to detect the crack on the beam is discussed at the end of the paper as well.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Cracks present a serious threat to the performance of structures and maybe will cause the catastrophic
sequent. Therefore, the dynamics of cracked structures was considered as a very important topic in history.
Because of the developments of smart materials and structures and the relevant research on applications of
piezoelectric materials to structural health monitoring, the cracked beams with piezoelectric sensors and/or
actuators are of many researcher’s interest and are treated as basic problems involved in the scientific fields
mentioned above.

In the past years, lots of research work about the damaged beam has been done. In some researches the
presence of a crack and the corresponding reduction of the flexural beam stiffness have been represented by
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Nomenclature

p subscript, represents the piezoelectric
layer in piezoelectric bimorph

e subscript, represents the elastic layer in
piezoelectric bimorph or the elastic beam

b subscript, represents the piezoelectric
bimorph

re, rp the mass density
r̄b the mass of per unit length of piezo-

electric bimorph
n Poisson’s ratio
Se11;S

E
p11 the axial compliance modulus of elastic
layer and the piezoelectric layer

d31; us
33 the piezoelectric strain constant and the

dielectric permittivity in constant stress
condition

E3;D3 the applied electric field and the electric
displacement along the z axial direction

w, f the lateral displacement and rotational
displacement

M, Q the transverse bending moment and
shear force

t, o the temporal variable and the electric
working frequency

I, V the electric current and voltage on piezo-
electric actuator

wp; lp; hp the width, length and thickness of piezo-
electric layer in bimorph

Ee, Ep the elastic modulus of the elastic beam
and the piezoelectric actuators

we, he the thickness of elastic layer in bimorph
or the thickness of the elastic beam

Y the measured electrical admittance
k the wave number of the piezoelectric

actuator
A the area of electric rod
a the depth of single-edge crack
Z the loss factor of the materials
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means of linear spring [1], whose stiffness may be related to the crack depth by the linear elastic fracture
mechanics theory. Ju et al. [2] had theoretically related the magnitude of the equivalent linear spring constants
to the length of the crack in the beam based on LEFM. This kind of model had successfully applied to simply
supported [3,4] cantilever [5] and free–free [6] cracked beams. Christides and Barr [7] and Shen and Pierre [8]
used either a two-term Rayleigh–Ritz [7] or the Galerkin method [8] to evaluate the influence of crack
parameters on the dynamic characteristic of beam. In the above two approaches, a crack function representing
the perturbation in stress field induced by the crack was considered. Fernandez-Saez et al. [9] provided a
closed-form expression for the simply supported cracked beam. A variational approach to the problem of
cracked beams had been used by Chondros et al. [10], and they developed a continuous cracked beam
vibration theory for the lateral vibration of cracked Bernoulli–Euler beams with single-edge or double-edge
open crack. Several authors also studied the nonlinear characteristic of open–closed crack. Chati et al. [11]
studied the nonlinear case of open–closed cracks by the finite element method, and they introduced a bilinear
frequency for cracked beam. Tsyfansky and Beresnevick [12] analyzed the essential nonlinear properties of
open–closed cracks as a way to detect the presence of the crack. Chondros et al. [13] analyzed the changes in
transverse vibration of a simply supported beam with breathing crack, experimental results are used for
comparison with the analytical results.

Recently, the problems of undamaged or damaged structures with piezoelectric actuators and/or sensors are
the focus of research fields of smart materials and structures and structural health monitoring. Several
approaches are used to describe the dynamics of the beam with piezoelectric actuators or sensors. In the static
approach [14] Crawley and Deluis used a statically determined equivalent force or moment as the amplitude of
the forcing function to determine the dynamic response due to the activation of integrated induced strain
actuators. Agnes [15] discussed the use of piezoelectric materials simultaneously as passive single-mode devices
and active broadband actuators to suppress structural vibration, and he developed a simple modal model that
predicted this behavior. Liang et al. [16,17] firstly proposed impedance method for smart beam and plate. The
dynamic equilibrium at the connection between the elastic and piezoelectric elements is formulated. Cho et al.
[17] presented a five-port equivalent electric circuit of piezoelectric bimorph to describe its dynamic
characteristic.

In the aspect of the structural health monitoring using active piezoelectric materials, the impedance
technique is often used to detect the damages in structures. Assuming that an active piezoelectric patch is
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attached on an uncracked beam and drives the beam to vibrate, the electromechanical impedance of the
piezoelectric element is defined as the ratio of the electrical current passing the piezoelectric element to the
applied AC voltage, which is expressed by [16]

Y ¼
ioA

lp

us
33 � d2

31=SE
p11

� �
þ

d2
31 tan klp

SE
p11klp

Zs

Zs þ Za

� �( )
, (1)

where Zs is the driving point mechanical impedance of the beam, and Za the mechanical impedance
of the piezoelectric element. When damages are presented in the beam, Zs will change which will cause
the change of the measured electrical admittance Y. Based on the above principle of the impedance
technique, the health condition of damaged structures can be evaluated. Castanien and Liang [18] used the
impedance technique and a signal processing technique called Baseline Normalized Standard Deviation
to identify the damages in the aircraft fuselage structures. Lopes et al. [19] presented a non-modal-
based technique to detect, locate and characterize structural damage by combining the impedance-
based structural health monitoring technique with an artificial neural network. Park et al. [20]
examined the feasibility of using an impedance-based health monitoring technique in monitoring a
critical civil facility. Gao et al. [21,22] measured the admittance of piezoelectric patches attached on the
cracked beam using the electron device named impedance analyzer. The health condition of cracked beam
was evaluated using the admittance amplitude changes [21] and the crack was identified using the
extracted frequencies from the measured admittance curves [22]. Naidu and Soh [23] combined the impedance
technique and the FEM model to identify the location and the severity of the damage. The frequency drifts
caused by the damage are also obtained from the measured admittance. Also, in health monitoring some
researchers already pointed out that the crack may be identified according to the obtained frequencies date in
beams [24,25].

From the above statements, it can be seen that the piezoelectric admittance is usually measured by
impedance analyzer, and the modal frequencies are extracted from the measured admittance curves if the
modal parameters are used in health monitoring. However, the theoretical relations between the location and
depth of the crack and the piezoelectric admittance are studied by few researchers at present, or even in the
simple cracked beam with active piezoelectric element.

The purpose of this paper is to build the piezoelectric admittance function of open-cracked Bernoulli–Euler
beam. A cracked beam with a pair of piezoelectric patches will be well modeled using impedance matrices. In
the model, the piezolaminated segment will be treated as a bimorph, and the open crack is modeled as linear
spring. The piezoelectric admittance function is obtained by solving the impedance equations. Then, the effect
of the crack on the admittance amplitude and modal frequencies of system may be examined in detail. Two
numerical examples are used to verify the present model. Some discussions and conclusions will be given at the
end of this paper.

2. Impedance matrix of piezoelectric bimorph

Herein let us consider a piezoelectric bimorph beam shown in Fig. 1, in which the material
and geometric dimensions of the two thin piezoelectric layers are identical to each other, but
they have opposite polling directions. Considering the bending vibration of the bimorph and
neglecting the effect of shear field and rotatory inertia, the motion equation of the bimorph is
given as [17]

Kb

q4wb

q4x
þ rb

q2wb

q2x
¼ 0, (2)

where

Kb ¼
2

3

wp

SE
p11

ðhp þ he=2Þ
3
� ðheÞ

3
� �

þ
we

Se11
he=2
� �3" #

; rb ¼ 2 wprphp þ werehe=2
� �

. (3)
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Fig. 1. The piezoelectric bimorph.
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By means of the separation of variables, the general solution of the displacement in Eq. (2) can be
expressed as

wb ¼ A cosðlbxÞ þ B sinðlbxÞ þ C coshðlbxÞ þD sinhðlbxÞð Þeiot, (4)

where l4b ¼ rb=ðKbÞo2, A, B, C and D are the coefficients which can be determined from the boundary
conditions of the bimorph.

According to the analogy theory between the electric systems and the mechanical systems, the mechanical
velocities are analogy to electric flows (so that it can be called as mechanical flows) while the mechanical forces
are analogy to be electric efforts (mechanical efforts). Therefore, the mechanical flows and efforts of the
piezoelectric bimorph can be defined by the edge velocities and forces of piezoelectric bimorph, whose sign
conventions are shown in Fig. 1:

Ub1 ¼
qwb

qt

����
x¼0

; Ub2 ¼
qfb

qt

����
x¼0

,

Ub3 ¼
qwb

qt

����
x¼lp

; Ub4 ¼
qfb

qt

����
x¼lp

,

Fb1 ¼ Qb

��
x¼0

; Fb2 ¼Mbjx¼0,

Fb3 ¼ �Qb

��
x¼lp

; Fpb4 ¼ �Mbjx¼lp , ð5Þ

where

Mb ¼ Kb

q2wb

qx2
þNV ; Qb ¼ Kb

q3wb

qx3
, (6)

where

N ¼ �
d31

sE
p11

wp

hp þ he

2

� 	
.

The electric current passing through the piezoelectric patch actuator may be expressed as

I ¼

Z
A

_D3 dA ¼ �NðU2 �U4Þ þ ioCcV , (7)

where

A ¼ wplp; Cc ¼ ms33 1�
d2
31

sE
p11m

s
33

 !
lpwp

2hp

.

Then the impedance equation for the piezoelectric bimorph beam shown in Fig. 1 can be written as

F ¼ ZbU, (8)
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where U ¼ Ub1;Ub2;Ub3;Ub4;Vf gT; F ¼ F b1;Fb2;Fb3;F b4; If gT; Zb is 5� 5 impedance matrix, whose non-
zero elements are listed as follows:

Z11 ¼ Z33 ¼
Kbl

3
b

io
�cn� sm

1� cm
; Z12 ¼ �Z34 ¼

Kbl
2
b

io
sn

1� cm
,

Z13 ¼
Kbl

3
b

io
sþ n

1� cm
; Z14 ¼ �Z23 ¼

Kbl
2
b

io
�cþm

1� cm
,

Z22 ¼ Z44 ¼
Kblb

io
cn� sm

1� cm
þ

N2

ioCc

; Z24 ¼
Kblb

io
s� n

1� cm
�

N2

ioCc

,

Z25 ¼ �Z45 ¼
N

ioCc

; Z55 ¼
1

ioCc

, ð9Þ

where

c ¼ cosðlblpÞ; s ¼ sinðlblpÞ; m ¼ coshðlblpÞ; n ¼ sinhðlblpÞ.

The detailed procedure obtaining the impedance matrix Zb may refer to Ref. [17].
Because there is no electric–mechanical coupling in elastic beam, the impedance matrix Ze can be obtained

by setting N ¼ 0 and changing the mass and rigidity of bimorph into that of elastic beam. The Ze is a 4� 4
impedance matrix which represents the dynamics of the elastic beam.

3. The electric admittance function of active piezoelectric elements

Two layered piezoelectric patches as active elements are bonded on a cracked beam symmetrically (see
Fig. 2). The electric admittance of piezoelectric elements is measured using the impedance analyzer. The whole
beam system is divided into four segments from the two ends of the piezoelectric elements and the location of
the crack. Therefore, there are three elastic segments whose length are L1, L2, L3, respectively, and one
bimorph segment whose length is Lp. Obviously, (L1+Lp+L2+L3) is equal to the beam length L. The serial
numbers of the four segments are labeled in Fig. 2 and assumed to be (n) (n ¼ 1,2,3,4) in order.

Firstly, the impedance equations of the four segments can be expressed as follows:

F
ðnÞ
b ¼ Z

ðnÞ
b U

ðnÞ
b ; ðn ¼ 2Þ (10)

for one bimorph segment, and

F ðnÞe ¼ ZðnÞe U ðnÞe ; ðn ¼ 1; 3; 4Þ (11)

for three elastic segments.
Next, the continuous conditions at the interface of the elastic segment (1) and the bimorph segment (2)

should be considered. These conditions are given by

F
ð1Þ
e3 ¼ �F

ð2Þ
b1 ; F

ð1Þ
e4 ¼ �F

ð2Þ
b2 ;

U
ð1Þ
e3 ¼ U

ð2Þ
b1 ; U

ð1Þ
e4 ¼ U

ð2Þ
b2 :

(12)
crack

L1 L2

L
Piezoelectric
actuators

Lp

Impedance
analyzer

(1) (2) (3) (4)

L3

Fig. 2. The electric admittance measurement of the cracked beam.
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The above continuous conditions are also adaptive to the interface between segment (2) and segment (3). It
should be noticed that there are totally eight equations, which can be obtained from two equations in the same
form as Eq. (12).

Thirdly, the compatible conditions in the vicinity of crack are considered. In this paper, a pair of
piezoelectric patches is assumed to produce pure bending moment to the cracked elastic beam. Therefore, the
equivalent stiffness of the rotational spring can be given as [26]

Kt1 ¼ 1=c1, (13)

where

c1 ¼
5:346he

EeIe

J1
a

he

� 	
,

J1
a

he

� 	
¼ 1:8624

a

he

� 	2

� 3:95
a

he

� 	3

þ 16:375
a

he

� 	4

� 37:226
a

he

� 	5

þ 76:81
a

he

� 	6

� 126:9
a

he

� 	7

þ 172
a

he

� 	8

� 43:97
a

he

� 	9

þ 66:56
a

he

� 	10

ð14Þ

for single-edge crack, and

Kt2 ¼ 1=c2, (15)

where

c1 ¼
1:8495ð1� m2Þhe

EeIe

J1
2a

he

� 	
,

J2
2a

he

� 	
¼ 0:63854

2a

he

� 	2

� 1:0385
2a

he

� 	3

þ 3:720154
2a

he

� 	4

� 5:177438
2a

heb

� 	5

þ 7:55301
2a

he

� 	6

� 7:33244
2a

he

� 	7

þ 2:49091
2a

he

� 	8

� 2:3391
2a

he

� 	9

þ 2:55976
2a

he

� 	10

� 9:7367
2a

he

� 	11

þ 6:93063
2a

he

� 	12

þ 5:42308
2a

he

� 	16

ð16Þ

for double-edges crack [10].
In addition, the additional rotation y* due to the crack [10] is

y� ¼
EeIe

Kt

q2we

qx2
; ðKt ¼ Kt1 or Kt2Þ. (17)

Then, the following relation between the left segment (3) and the right segment (4) of the
crack exists:

qy�

qt
¼

EeIe

Kt

q3we

qx2qt
¼

io
Kt

F
ð4Þ
e2 ¼ U

ð4Þ
e2 �U

ð3Þ
e4 , (18)

Therefore, the compatible conditions between the two segments near by the crack are

U
ð3Þ
e3 ¼ U

ð4Þ
e1 ;U

ð3Þ
e4 þ io

1

Kt
F
ð4Þ
e2 ¼ U

ð4Þ
e2 ,

F
ð3Þ
e3 ¼ �F

ð4Þ
e1 ; F

ð3Þ
e4 ¼ �F

ð4Þ
e2 . ð19Þ

Thirdly, the boundary conditions of the system should be considered. Assuming the driven voltage Vin is
given, the electrical boundary conditions on the bimorph can be written as

V ¼ V in. (20)
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As far as the mechanical boundary conditions are concerned, three different types of mechanical boundary
conditions at the two ends of the beam will be considered,

Free� Free ends F
ð1Þ
e1 ¼ F

ð2Þ
e1 ¼ F

ð4Þ
e3 ¼ F

ð4Þ
e4 ¼ 0;

Hinged� hinged ends U
ð1Þ
e2 ¼ U

ð4Þ
e4 ¼ 0;F ð1Þe2 ¼ F

ð4Þ
e4 ¼ 0;

Clamped � free ends U
ð1Þ
e1 ¼ U

ð1Þ
e2 ¼ 0;F ð4Þe3 ¼ F

ð4Þ
e4 ¼ 0:

(21)

There are totally 34 unknown variables in Eqs. (10) and (11), and there are also 34 equations, which can be
derived from Eqs. (10)–(12), (19)–(21), so that electro-mechanical field parameters in the beam system can be
finally obtained by solving these linear equations.

Once the electric flow I is obtained, the electric admittance of the system will be expressed by

Y ¼ I=V in. (22)

Obviously, the admittance Y is the function of the crack depth, the crack location and the other system
parameters. As the admittance tends to infinity, the resonant phenomenon will happen in the system. The
corresponding frequencies are the resonant frequencies of the cracked beam system. Using the impedance
analyzer, the electric admittance of such system can be measured conveniently and the resonant frequencies of
the cracked beam system can be extracted out [22,23]. This means that the crack in the beam can be detected
using the active piezoelectric elements.

4. Numeric examples and discussions

A free–free beam with a single-edge crack will be taken as the first examples in this section, which were
previously studied in the experiments by Gao et al. [21,22]. The effect of crack depth on the electric admittance
of piezoelectric actuators and the frequencies will be investigated in this example. The material properties,
dimensions and the relative locations of the piezoelectric actuators to the crack of the beam [21,22] are as
follows:

re ¼ 2700 kg=m3; Y e ¼ 7:1� 1010 N=m2; L ¼ 0:8m; he ¼ 0:008m; we ¼ 0:008m; Ze ¼ 0:006;

rp ¼ 7800 kg=m3; Y p ¼ 5:803� 1010 N=m2; d31 ¼ �1:66� 10�14 m=V; us
33 ¼ 1:5� 10�8 F=m; Zp ¼ 0:001;

hp ¼ 0:0005m; wp ¼ 0:005mm; :L1 ¼ 0:2m; Lp ¼ 0:025m; L2 ¼ 0:075m:

In our theoretical calculation, the damping is considered using the loss factor Z of the materials.
The admittance responses of the actuators for different crack depth ratio a/he are calculated and shown in

Fig. 3, and the resonant frequencies of the second to the seventh mode read from Fig. 3 are also listed in
Table 1. The experimental results [22] are also shown in Table 1 for comparison. It can be seen from Fig. 3 that
when the crack depth ratio increases, the resonant frequencies will decrease and the peak values of the
admittance at the resonant frequencies points will decrease as well. These phenomena have been observed in
the experiments by Gao et al. [21] and their measured curves are also referenced in Fig. 4 for comparison. The
admittance amplitude and the resonant frequencies in Figs. 3 and 4 are the same order of magnitude. It is also
found in calculation that the error between the theoretical values and the experimental values becomes
significant only in high-frequency range beyond 2800Hz. It is well recognized that resonant frequencies of
cracked structures decrease with cracks because of the reduction of the local rigidity. From the point of
energy, the decrease of the peak values of admittance shows the energy consumption of the longitudinal wave,
which reflects energy requirement in the piezoelectric system. A maximum error of 1.92% is found at the fifth
mode frequency as crack depth ratio is 0.6125 in Table 1, which shows that the calculated results agree well
with the experimental values.

Next, the present theoretical model will be further validated for different boundary conditions and different
crack types. A simple-supported aluminum beam with one single-edge crack and a simple-supported steel
beam with a double-edges crack beam are chosen as the second numerical example, since the two cracked
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Fig. 3. The calculated admittance curves.

Fig. 4. The experimental admittance curves.

Table 1

Comparison of system frequencies (Hz) for different crack depth ratio a/he

Mode number a/he ¼ 0 a/he ¼ 0.375 a/he ¼ 0.6125

Experimental Calculated Experimental Calculated Experimental Calculated

Second 178.6 179.5 176.4 177.8 172.1 167.6

Third 350.1 351.6 349.4 351.5 348.5 350.7

Forth 579.3 584.5 568.0 572.0 557.6 542.5

Firth 887.0 877.8 882.9 874.5 878.0 861.1

Sixth 1215.0 1214.0 1204.3 1209.3 1195.2 1185.8

Seventh 1613.0 1619.7 1591.2 1613.6 1557.5 1537.4

Y.-D. Kuang et al. / Journal of Sound and Vibration 298 (2006) 393–403400
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beams without piezoelectric elements are experimentally studied before [7,10]. A crack is located at the
midspan of the two beams. The material properties and dimensions of the two beams are:

re ¼ 2800 kg=m3; n ¼ 0:35; Ee ¼ 7:2� 1010 N=m2; he ¼ 0:0254m; we ¼ 0:006m; L ¼ 0:235m

for the aluminum beam [10] and

re ¼ 7800 kg=m3; n ¼ 0:35; Ee ¼ 2:06� 1011 N=m2; he ¼ 0:03175m; we ¼ 0:00952m; L ¼ 0:575m

for the steel beam [7].
In order to verify the present model, a pair of active piezoelectric elements is assumed to be bonded to the

above two beams to sense the crack. The piezoelectric material PZT-G1195 is used, whose material properties,
dimensions and relative locations to the beams are:

rp ¼ 7650 kg=m3; n ¼ 0:31; Ep ¼ 6:3� 1010 N=m2; d31 ¼ �1:66� 10�14 m=V,

us
33 ¼ 1:5� 10�8 F=m; hp ¼ 0:0005m.

wp ¼ 0:006mm; L1 ¼ 0:04m; Lp ¼ 0:02m for the single�edge cracked beam; and

wp ¼ 0:00952; L1 ¼ 0:1m; Lp ¼ 0:04m for the double�edges cracked beam:

It can be seen from the above data that the mass and stiffness of the piezoelectric elements are small enough to
be ignored, comparing with those of the beam. It is assumed that the applied AC to the piezoelectric actuators
is 5V which is applied by the impedance analyzer.

The frequencies changes with different crack depth ratios are calculated and shown in Fig. 5 for the single-
edge cracked beam and in Fig. 6 for the double-edges cracked beam. The frequencies results of the cracked
beam obtained by other methods, sourcing from Refs. [7,10] are respectively copied in Figs. 5 and 6 for
comparison, but there are no piezoelectric elements in Refs. [7,10].

It can be seen from Figs. 5 and 6 that a good agreement is achieved among these results, even though the
piezoelectric elements are not used in these researches about cracked beams [7,10]. This conclusion is quiet
reasonable, because the mass and stiffness of the piezoelectric elements are far smaller than that of the host
structure, which has been mentioned above. It is also found in calculations that the crack at midspan has little
effect on the even-order mode frequencies of the two beams. These characteristics can be used to detect the crack
location, provided that the frequencies covering the multiple modes can be sensed by active piezoelectric elements.
Fig. 5. Comparison of the nature frequency of a single-edge cracked beam.
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Fig. 6. Comparison of the nature frequency of a double-edges cracked beam.

Y.-D. Kuang et al. / Journal of Sound and Vibration 298 (2006) 393–403402
5. Conclusive remarks

A cracked beam with a pair of piezoelectric patches which are symmetrically bonded on the beam is
extensively studied in this paper. The electric admittance function of the system is built by solving linear
impedance equations, and the changes of the admittance amplitude and the resonant frequencies of the
cracked beam are obtained.

Simply supported or free–free beams with single-edge or double-edges cracks actuated by piezoelectric
elements are widely studied. The resonant frequencies of cracked beams are obtained from the admittance
function and compared with the results obtained by experiments and other methods. Good agreements are
achieved among these results. The changes of the peak values and corresponding frequencies of admittance
curves are consistent with the measured curves. The resonant frequencies of cracked beams, which can be
extracted from admittance curves, decrease with increase of crack depth. Crack at different locations has
distinct influence on the even-mode and odd-mode vibration of the cracked beam. Hence, the active elements
can be used to detect the crack, provided that the piezoelectric actuators are bonded at an opportune position
on the beam.
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